CE 205: Finite Element Method: Homework IV

Instructor: Dr. Narayan Sundaram*

March 11, 2024

This is a guided programming assignment, taking you through the three essential steps of any FE analysis: Pre-processing, solution, and post-processing, while making you write code for each part. You must submit all source code. Show all work clearly. Plots must be labeled legibly and completely. This homework has THREE pages.

- 1. Obtain a symbolic expression (using MATLAB symbolics, Mathematica, or manually) for the stiffness matrix of a plane-stress Q4 element given the input parameters a, b, E, ν , and t^{el} . Start with the [B] matrix of a Q4 element and then use $\int \int [B]^T [E] [B] dx dy$ as shown in the demo in class. As a test, write down the matrix $[k]/(E t^{el})$ for an element with $\nu = 0.25$.
- 2. Write a MATLAB function 'Q4stiffness' that returns the (numerical) stiffness matrix of a rectangular Q4 element given the values of the input parameters : Elastic moduli E, ν , the element half-dimensions a, b, and the element thickness t^{el} . You can copy and use the symbolic expressions for the stiffness matrix entries derived in part (1) above to generate this function. The return value should be a symmetric 8 x 8 matrix of numbers for the given input parameters.
- 3. Write a MATLAB function 'makemesh' that generates a valid finite element mesh of Q4 elements over a beam of given length L and height h. This function should also accept, as input, the number of elements along the span n_h and the number of elements through the height, n_v . The outputs of this meshing function should be a matrix of elements of size $n_{elems} \times 4$, containing the node numbers in each element, as well as corresponding matrices of nodal coordinates.
- 4. Check that your FE mesh generator in part (3) produces a valid, topologically and geometrically correct mesh. One way to do this is to write MATLAB code to produce a plot of the mesh with all the nodes and elements labeled. For instance, a mesh of

^{*}Department of Civil Engineering, Indian Institute of Science

 4×2 elements for an L = 1.0 m, h = 0.1 m beam has 8 Q4 elements and 15 nodes. It has a matrix of element connectivities given by:

1	2	7	6
2	3	8	7
3	4	9	8
4	5	10	9
6	7	12	11
7	8	13	12
8	9	14	13
9	10	15	14

The corresponding plot of the mesh is shown in Fig. 1. Notice the node numbers (blue) and element numbers (black). The green A identifies the first edge in every element.

ŕ	11	12						
	5		6		7		8	
	6 <u> </u>	7	<u>A</u>		A		A	10
- [1	r i	2	Ĩ	3	Ĩ	4	
	1 ^		~	2	۵ ۵	4	-	c .
		2	~~~~			4	A	

Figure 1: Sample 4×2 mesh of Q4 elements

Sometimes, one can produce a so-called shrink plot where the interior element sides are slightly shrunk to show the element shapes, as shown in Fig. 2.

í	11	12	13	415
	5	6	7	8
	6A	<u>↓</u>	8) <u> </u>
	1	2	3	4
	1 <u> </u>	<u></u>	3 <u> </u>	، <u>م</u> ح

Figure 2: Shrink plot of the same mesh

5. Now consider an L = 1.0 m long rectangular cross-section aluminum beam, of height h = 0.1 m (slenderness 10) and out-of-plane thickness 0.05 m. The left-end of the beam is fixed (cantilevered), and the right end is tip-loaded. For aluminum, E = 70 GPa and $\nu = 0.33$. The tip load is applied downward, P = -2000 N.

Use the functions developed above to write a MATLAB program to analyze this tiploaded cantilever problem using Q4 elements. The user should be able to specify the number of elements over the span n_h and through the thickness n_v .

Proceed systematically through assembly, boundary condition and load application specification, and solution of the reduced system. All nodes along the left-end of the cantilever should be fixed. The tip-load should be divided in half and applied to the top-rightmost and bottom-rightmost nodes in your mesh. For example, in Fig. 1, this would be loads of P/2 each applied to nodes 5 and 15.

- Calculate a closed-form expression for the tip deflection, vth, using linear elasticity. What is its value for the present problem? *Hint: The elasticity solution coincides with the strength-of-materials solution in this case.*
- 7. Conduct a mesh convergence study using your FE program. Use the vertical displacement of the bottom-rightmost node (e.g. this would be node 5 in Fig. 1) v^{tip} to check for convergence, while comparing against the analytical expression v^{th} above. Do this study for the following sets of mesh parameters:

n_h	n_v
10	1, 2, 4
20	1, 2, 4, 8
40	1, 2, 4, 8, 16
60	1, 2, 4, 8, 16
80	1, 2, 4, 8, 16

This is a total of 22 FE analyses using your code. Make a table of v^{tip}/v^{th} for these values of n_h and n_v . Comment on the convergence rate and on this parametric study. What does this tell you about optimal element use for this problem?

8. Write a MATLAB code to calculate the element stresses for this problem. For the 10×1 and 80×16 analyses, plot the FE σ_{xx} as a function of x at y = -h/2, the lower face of the beam. Superimpose the analytical σ_{xx} stress. What do you observe?